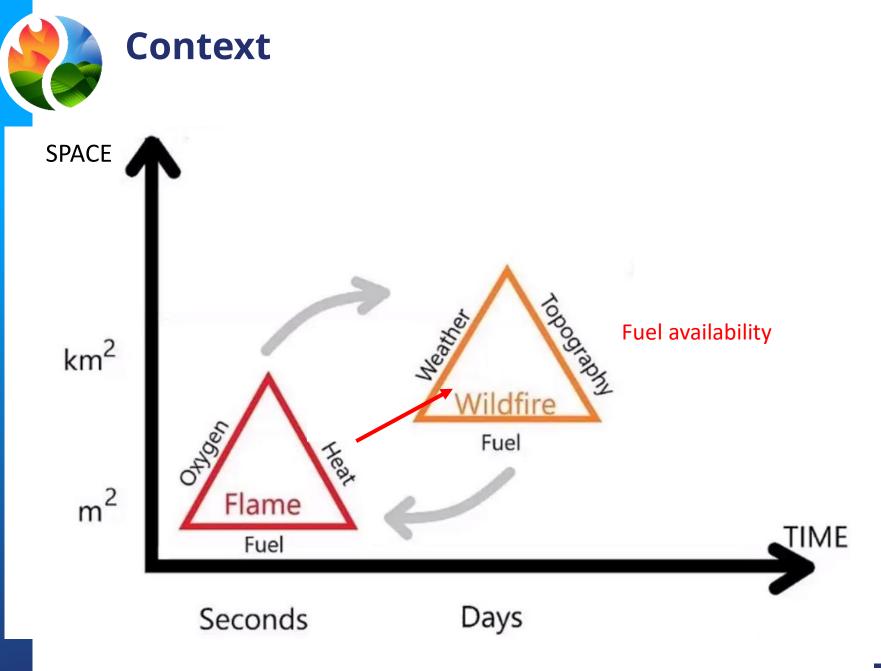


IA 2.2: Scheduling and implementing novel management practices

Methodology to evaluate cost-effective management alternatives at the stand-level for increasing fire resistance (section 1)

Eduard Busquets, Teresa Valor, Mario Beltrán, Pedro Tardós, José Ramon González-Olabarria, Pere Casals, Míriam Piqué


eduard.busquets@ctfc.cat miriam.pique@ctfc.cat teresa.valor@ctfc.cat

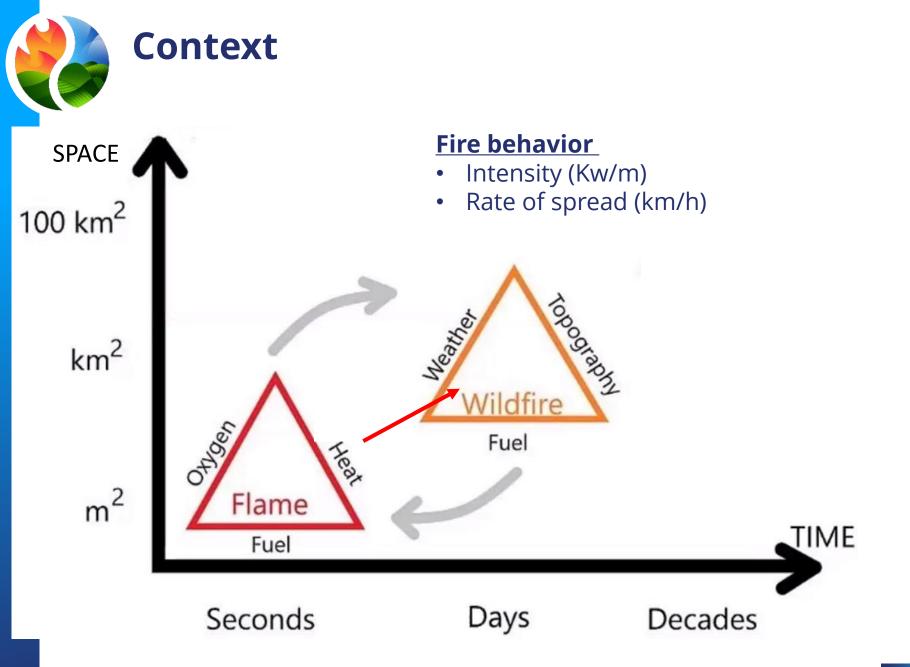
Webinar session 28/05/2024

Funded by the European Union

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101037419. It does not necessarily reflect the view of the European Union and in no way anticipates the Commission's future policy in this area.

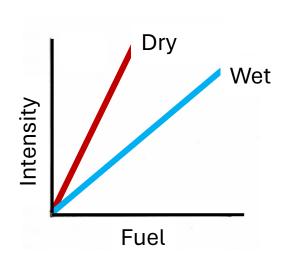
Adapted from Moritz et al.

- Fire spread is possible only above a given fuel availability threshold.
- Fuel availability (how ready a fuel is for burning):
 - Fuel load (kg/m2)
 - Fuel continuity
 - Dead to live fuel ratio



Fine dead fuel (1-h fuel load)

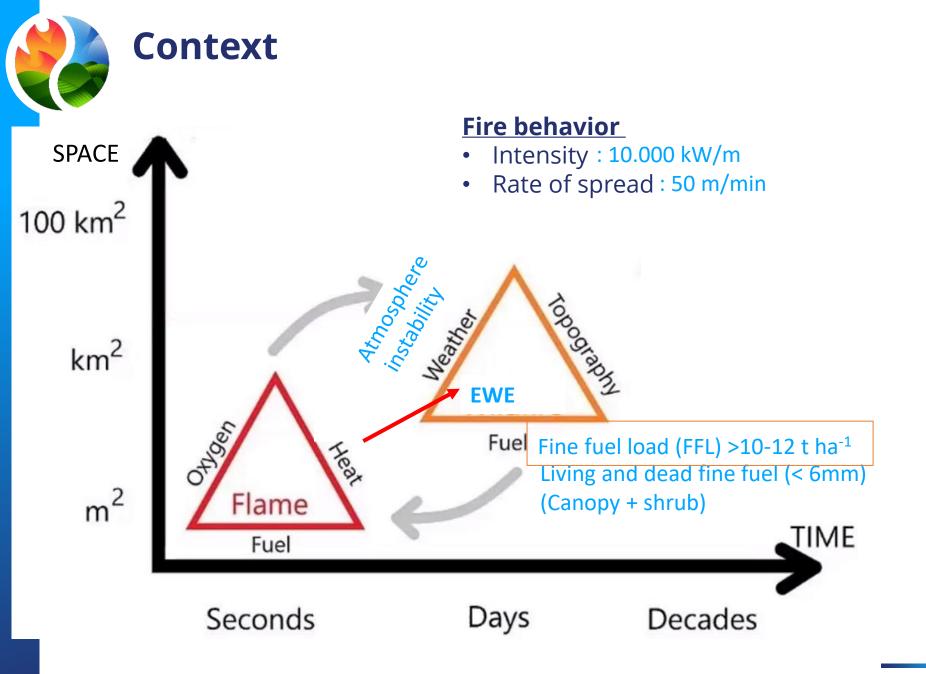
Medium dead fuel (10-h fuel load)



Fire behavior

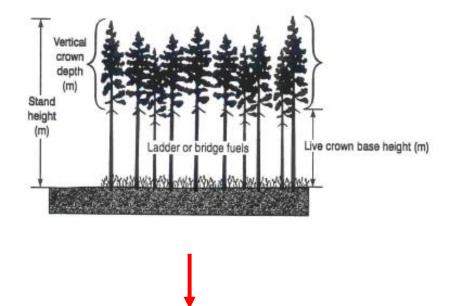
- Intensity (Kw/m)
- Rate of spread (km/h)
- Flame length

Fire severity


- Loss of organic mater
 - Below and aboveground

Severity aboveground

Intensity

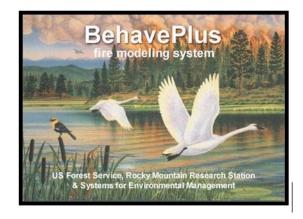


- **Resistance:** the capacity to continue providing functions and ecosystem services **immediately after the event.**
 - Intensity
 - Forest structure

- Increasing stand resistance:
 - Reducing surface fuel load
 - Increasing crown base height
 - Decreasing crown density

Thinning intensity? Height of pruning?

- Reduce the severity of the fire.
- Help extinction tasks


(Agee and Skinner, 2005)

- Fire behaviour systems
 - To assess crown fire hazard (manager tool)
 - Compare:
 - Crown fire potential of different stands
 - Effectiveness of fuel treatments

Tools Help	Ban		Project			Dete: An			n File:	
						Dele: As	olyst]	144	in Palec	
yuu Output Output Ta Input	Ele Output Ch	at Hazard Cha	File Charac	Aeriotics Char		Output				
Scen	ario (C.A.			_0_						
Simulation	Tape Junior		retice +							
on helmold 110					Units					
	Dfilese 0.1				harting	Scenario	A	С	0	
	Mine 1		0.1		haction	17.2				Units
	Miner 1				harting	09/8				harting
	Max 1				haction	SPRI				
tish had model TVC						HPUA				
14ND					baction	FLN				
	which in the				harding	75				
	March 199				haction	EM.				-
P.J	Migh I				haction	DATIV				
load moisture	MCR1				percent	Crown Fire Indices				
FBA Tables	MC10				pecert	Lowen Fire Indices				este w
,	45100				percent	CFINE				ests +
Live moisture	HOH T				percent	SUR				
,	KUN T				percent	Critical Initiation				
Canopy Itaels	ACEO					FUNinitation				
	CABH			_	feet	FLMUnitation				feet +
	ACR				ton/acre	SPRTinitation				duly w
	TONC 1998	100	100	500	pecert	Critical Active				
	519L				meters	ACED active				
	N/ND					SPREactive				(Avity w
	SLOP				pecert	Cessation				
	WORR				degrees	(hwhiD-cessation				

Thinning intensity? Height of pruning?

• Cost-effective?

Pre-treatment

Post-treatment

• Fuel treatments

Objective

Develop a methodology that allows to evaluate cost-effective management alternatives at the stand-level for increasing fire resistance.

Develop a methodology that allows to evaluate cost-effective management alternatives at the stand-level for increasing fire resistance.

 The list of treatments in each management strategy has been proposed for the main forest types in Catalonia and for three stages of development.

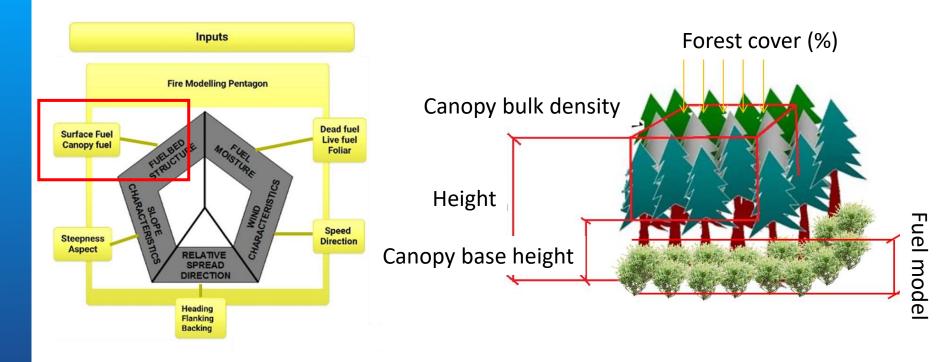
		Mana	agement strateg	бу
Forest type		Multifunctional management	Conversion	
Pinus halepensis forests		U U U	to	Prescribed
Pinus sylvestris forests	Stand stage	focusing on	silvopastora	burning
Quercus ilex forests		Wildfire	•	burning
Pinus nigra forests		prevention	l system	
Pinus uncinata forests		prevention		
Quercus humilis forests	Young	Х	X ⁽¹⁾	
Quercus suber forests	Mid-age	×	V	v
Pinus pinea forests	iviiu-age	Х	Х	Х
Quercus faginea forests	Adult	Х	X	Х

- 1. Definition of pre- and post-treatment structures using stand parameters.
- 2. Fire behavior modelling system: inputs.
- 3. Integrating stand parameters into fire simulators.
- Using management guidelines of Catalonia.

- Height
- Forest cover
- Tree density
- DBH
- Basal area
- Shrub cover
- Shrub height

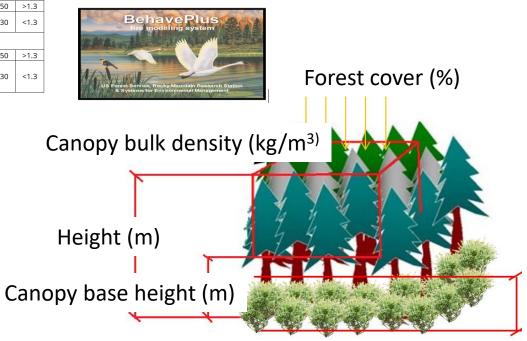
Development stages	Treatment	<u>H</u> (m)	CC (%)	N (tree <u>ha⁻¹</u>)	DBH (cm)	BA (m² <u>ha^{.1})</u>	SC (%)	SH (m)
Regenerated- Young forest			1		1	1	1	1
Pre-treatment		4-6	≈100	6000	6			
Post-treatment	Pre- commercial thinning	6	≈70	1800	8-10	20	<30	<1.3
Mid-age forest								
Pre-treatment		6-12	>70	1600	15-17	30-40	>50	>1.3
Post-treatment	Clearing + low thinning	12	≈70	850	20	20-30 ¹	<30	<1.3
Adult forest		-	•	-				
Pre-treatment		>12	>70	750	28-30	>30	>50	>1.3
Post-treatment	Clearing + mixed thinning	>14	≈70	500	32	>20 ¹	<30	<1.3

Post- treatment



- Height
- Forest cover
- Tree density
- DBH
- Basal area
- Shrub cover
- Shrub height

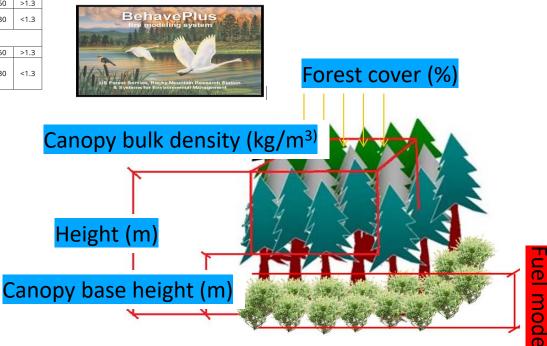
¹The pre-treatment basal area has been reduced in 30%.



- 1. Definition of pre- and post-treatment structures using stand parameters.
- 2. Fire behavior modelling system: inputs.
- 3. Integrating stand parameters into fire simulate

Development stages	Treatment	<u>H</u> (m)	CC (%)	N (tree <u>ha⁻¹)</u>	DBH (cm)	BA (m² <u>ha⁻¹)</u>	SC (%)	SH (m)
Regenerated- Young forest								
Pre-treatment		4-6	≈100	6000	6			
Post-treatment	Pre- commercial thinning	6	≈70	1800	8-10	20	<30	<1.3
Mid-age forest							-	
Pre-treatment		6-12	>70	1600	15-17	30-40	>50	>1.3
Post-treatment	Clearing + low thinning	12	≈70	850	20	20-30 ¹	<30	<1.3
Adult forest								
Pre-treatment		>12	>70	750	28-30	>30	>50	>1.3
Post-treatment	Clearing + mixed thinning	>14	≈70	500	32	>20 ¹	<30	<1.3

- 1. Definition of pre- and post-treatment structures using stand parameters.
- 2. Fire behavior modelling system: inputs.
- 3. Integrating stand parameters into fire simulators.


Fuel mode

¹The pre-treatment basal area has been reduced in 30%.

- Height (m)
- Forest cover (%)
- Tree density (trees/ha)
- DBH (cm)
- Basal area (m^{2/}ha)
- Shrub cover (%)
- Shrub height (cm)

Development stages	Treatment			DBH (cm)	BA (m² <u>ha⁻¹)</u>	SC (%)	SH (m)	
Regenerated- Young forest								
Pre-treatment		4-6	≈100	6000	6			
Post-treatment	Pre- commercial thinning	6	≈70	1800	8-10	20	<30	<1.3
Mid-age forest								
Pre-treatment		6-12	>70	1600	15-17	30-40	>50	>1.3
Post-treatment	Clearing + low thinning	12	≈70	850	20	20-30 ¹	<30	<1.3
Adult forest								
Pre-treatment		>12	>70	750	28-30	>30	>50	>1.3
Post-treatment	Clearing + mixed thinning	>14	≈70	500	32	>20 ¹	<30	<1.3

- 1. Definition of pre- and post-treatment structures using stand parameters.
- 2. Fire behavior modelling system: inputs.
- 3. Integrating stand parameters into fire simulators.

DBH (cm) •

•

•

•

Height (m)

Basal area (m^{2/}ha) •

Forest cover (%)

Tree density (trees/ha)

- Shrub cover (%) •

• Fuel models (FM) are characterized by a set of parameters.

Scott and Burgan (2005)

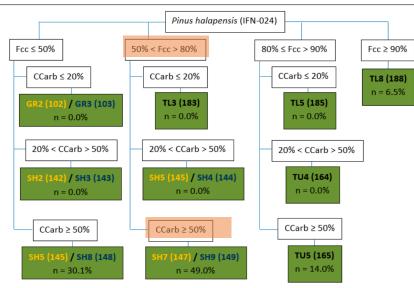
Table 7-Fuel model parameters.

Fuel		Fuel load (t/ac)				Fuel	SA	V ratio (1	l/ft) ^b	Fuel bed	Dead fuel extinction	Heat	
model code	1-hr	10-hr	100-hr	Live	Live woody	model type ^a	Dead 1-hr	Live	Live	depth (ft)	moisture (percent)	content BTU/lb) ^c	
GR1	0.10	0.00	0.00	0.30	0.00	dynamic	2200	2000	9999	0.4	15	8000	
GR2	0.10	0.00	0.00	1.00	0.00	dynamic	2000	1800	9999	1.0	15	8000	
GR3	0.10	0.40	0.00	1.50	0.00	dynamic	1500	1300	9999	2.0	30	8000	
GR4	0.25	0.00	0.00	1.90	0.00	dynamic	2000	1800	9999	2.0	15	8000	
GR5	0.40	0.00	0.00	2.50	0.00	dynamic	1800	1600	9999	1.5	40	8000	Life
GR6	0.10	0.00	0.00	3.40	0.00	dynamic	2200	2000	9999	1.5	40	9000	Lue
GR7	1.00	0.00	0.00	5.40	0.00	dynamic	2000	1800	9999	3.0	15	8000	
GR8	0.50	1.00	0.00	7.30	0.00	dynamic	1500	1300	9999	4.0	30	8000	
GR9	1.00	1.00	0.00	9.00	0.00	dynamic	1800	1600	9999	5.0	40	8000	
GS1	0.20	0.00	0.00	0.50	0.65	dynamic	2000	1800	1800	0.9	15	8000	0.50
GS2	0.50	0.50	0.00	0.60	1.00	dynamic	2000	1800	1800	1.5	15	8000	0.50
GS3	0.30	0.25	0.00	1.45	1.25	dynamic	1800	1600	1600	1.8	40	8000	
GS4	1.90	0.30	0.10	3.40	7.10	dynamic	1800	1600	1600	2.1	40	8000	
SH1	0.25	0.25	0.00	0.15	1.30	dynamic	2000	1800	1600	1.0	15	8000	5.01
SH2	1.35	2.40	0.75	0.00	3.85	N/A	2000	9999	1600	1.0	15	8000	
SH3	0.45	3.00	0.00	0.00	6.20	N/A	1600	9999	1400	2.4	40	8000	2.00
SH4	0.85	1.15	0.20	0.00	2.55	N/A	2000	1800	1600	3.0	30	8000	
SH5	3.60	2.10	0.00	0.00	2.90	N/A	750	9999	1600	6.0	15	8000	-
SH6	2.90	1.45	0.00	0.00	1.40	N/A	750	9999	1600	2.0	30	8000	0.37
SH7	3.50	5.30	2.20	0.00	3.40	N/A	750	9999	1600	6.0	15	8000	
SH8	2.05	3.40	0.85	0.00	4.35	N/A	750	9999	1600	3.0	40	8000	
SH9	4.50	2.45	0.00	1.55	7.00	dynamic	750	1800	1500	4.4	40	8000	
TU1	0.20	0.90	1.50	0.20	0.90	dynamic	2000	1800	1600	0.6	20	8000	
TU2	0.95	1.80	1.25	0.00	0.20	N/A	2000	9999	1600	1.0	30	8000	
TU3	1.10	0.15	0.25	0.65	1.10	dynamic	1800	1600	1400	1.3	30	8000	
TU4	4.50	0.00	0.00	0.00	2.00	N/A	2300	9999	2000	0.5	12	8000	
TU5	4.00	4.00	3.00	0.00	3.00	N/A	1500	9999	750	1.0	25	8000	2.00
TL1	1.00	2.20	3.60	0.00	0.00	N/A	2000	9999	9999	0.2	30	8000	
TL2	1.40	2.30	2.20	0.00	0.00	N/A	2000	9999	9999	0.2	25	8000	
TL3	0.50	2.20	2.80	0.00	0.00	N/A	2000	9999	9999	0.3	20	8000	
TL4	0.50	1.50	4.20	0.00	0.00	N/A	2000	9999	9999	0.4	25	8000	
TL5	1.15	2.50	4.40	0.00	0.00	N/A	2000	9999	1600	0.6	25	8000	
TL6	2.40	1.20	1.20	0.00	0.00	N/A	2000	9999	9999	0.3	25	8000	
TL7	0.30	1.40	8.10	0.00	0.00	N/A	2000	9999	9999	0.4	25	8000	
TL8	5.80	1.40	1.10	0.00	0.00	N/A	1800	9999	9999	0.3	35	8000	
TL9	6.65	3.30	4.15	0.00	0.00	N/A	1800	9999	1600	0.6	35	8000	
SB1	1.50	3.00	11.00	0.00	0.00	N/A	2000	9999	9999	1.0	25	8000	
SB2	4.50	4.25	4.00	0.00	0.00	N/A	2000	9999	9999	1.0	25	8000	
SB3	5.50	2.75	3.00	0.00	0.00	N/A	2000	9999	9999	1.2	25	8000	
SB4	5.25	3.50	5.25	0.00	0.00	N/A	2000	9999	9999	2.7	25	8000	

• Adapt or calibrate the NFFL classification to own conditions.

^a Fuel model type does not apply to fuel models without live herbaceous load.

^b The value 9999 was assigned in cases where there is no load in a particular fuel class or category


^c The same heat content value was applied to both live and dead fuel categories.

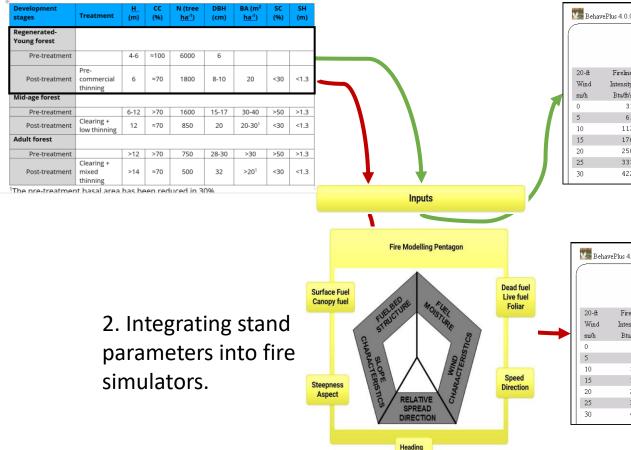
- Catalonia
 - 40 fuel model of Sc0tt and Burgan (2005) tied to Catalonian forest types and structures (Krsnick et al. 2022)

• Forest and shrub cover (%)

Scott and Burgan (2005) Fuel Model sh7

Fuel Model Number	147								
Fuel Model Name	sh7								
Fuel Model Type	Static								
Description	Very high load,	dry climate shrub (S)							
1-h Fuel Load	3.5 tons/ac	7.8 tonnes/ha							
10-h Fuel Load	5.3 tons/ac	12 tonnes/ha							
100-h Fuel Load	2.2 tons/ac	4.9 tonnes/ha							
Live Herbaceous Fuel Load	0 tons/ac	0 tonnes/ha							
Live Woody Fuel Load	3.4 tons/ac	7.6 tonnes/ha							
1-h Surface Area/Vol Ratio	750 ft2/ft3	24.6063 cm2/cm3							
Live Herbaceous Surface Area/Vol Ratio	1800 ft2/ft3	59.0551 cm2/cm3							
Live Woody Surface Area/Vol Ratio	1600 ft2/ft3	52.4934 cm2/cm3							
Fuel Bed Depth	6 feet	182.88 cm							
Dead Fuel Moisture of Extinction	15 percent	15 percent							
Dead Fuel Heat Content	8000 Btu/Ib	18622.3 KJ/Kg							
Live Fuel Heat Content	8000 Btu/Ib	18622.3 KJ/Kg							
- The value 9999 was assigned in cases where there is no load in a	particular fuel class or catego	ΣΓΥ							

⁻ The value 9999 was assigned in cases where there is no load in a particular fuel class or category ^c The same heat content value was applied to both live and dead fuel categories.


medfuels

R package to estimate individual fuel biomass and stand-level fuel loading for Catalonia, Spain

 Definition of pre- and post-treatment structures using stand parameters.

Flanking

Backing

Dubbl us

3. Fire behavior before and after treatments.

Behav	vePlus 4.0.0	1	Mon, Aug 2	Page 3							
	Pre-treatment										
20-ft	Fireline	Flame	Trans	Transition	Active	Active	Fire				
Wind	Intensity	Length	Ratio	to Crown?	Ratio	Crown?	Туре				
mi/h	Btu/ft/s	ft									
0	31	2.2	3.73	No	0.07	No	Surface				
5	61	3.0	1.44	Yes	0.26	No	Torching				
10	112	3.9	2.65	Yes	0.59	No	Torching				
15	176	4.9	4.16	Yes	0.99	No	Torching				
20	250	5.7	5.91	Yes	1.46	Yes	Crowning				
25	333	6.5	7.86	Yes	1.98	Yes	Crowning				
30	422	7.3	3.98	Yes	2.54	Yes	Crowning				

Page 3		:06	7, 2007 at 13:59	Mon, Aug 2	BehavePlus 4.0.0 Mon, Aug								
		Post-treatment											
Fire	Active	Active	Transition	Trans	Flame	Fireline	20-ft						
Туре	Crown?	Ratio	to Crown?	Ratio	Length	Intensity	Wind						
					ft	Btu/ft/s	mi/h						
Surface	No	0.07	No	0.73	2.2	31	0						
Torching	No	0.26	Yes	1.44	3.0	61	5						
Torching	No	0.59	Yes	2.65	3.9	112	10						
Torching	No	0.99	Yes	4.16	4.9	176	15						
Crowning	Yes	1.46	Yes	5.91	5.7	250	20						
Crowning	Yes	1.98	Yes	7.86	6.5	333	25						
Crowning	Yes	2.54	Yes	9.98	7.3	422	30						

We can evaluate the effect of the treatment on both the structure, the fuel loads and the behavior of the potential fire.

							E T											
	Pinus halepensis																	
Fuel			Regenerate		Young Fo		Adult for	t	Regenera	ted grap	Young	- And	Adult for	rect	Young F		Adult fo	
hazar	d		-		-				•						_			
	Fuel Bed	m	0.5	-41%	0.5	-52%	0.5	-63%	0.25	-71%	0.25	-76%	0.25	-81%	0.1	-90%	0.1	-93%
	Canopy cover	%	70.00	-30%	70.00	-13%	70.00	-13%	70.00	-30%	70.00	-13%	70.00	-13%	60.00	-25%	60.00	-25%
	Canopy Base Height	m	2.37	32%	5.84	42%	7.00	21%	2.37	32%	5.84	42%	7.00	21%	6.40	56%	7.60	31%
	Canopy Bulk Density	kg/m3	0.12	-67%	0.14	-36%	0.20	-29%	0.12	-67%	0.14	-36%	0.20	-29%	0.14	-36%	0.18	-36%
	CARB (SHC)	%	25.00	-77%	25.00	-77%	25.00	-78%	20.00	-82%	20.00	-82%	20.00	-82%	10.00	-91%	10.00	-91%
	Vertical continuity (VC	C) m	1.87	99%	5.34	75%	6.50	46%	2.12	126%	5.59	83%	6.75	51%	6.30	106%	7.50	68%
	Crown fire type		Torching	C>T	Surface	C>S	CondCrown	C>CC	Surface	C>S	Surface	C>S	CondCrown	C>CC	Surface	C>S (CondCrowr	n C>CC
	Rate of spread	m/min	18.4	-16%	2.3	-89%	2	-89%	0.5	-98%	0.5	-98%	0.5	-97%	0.2	-99%	0.2	-99%
TFA meteo	Fire intensity	kW/m	8666	-71%	808	-97%	661	-97%	25	-100%	25	-100%	20	-100%	9	-100%	7	-100%
scenario	Flame lenght	m	11.2	-56%	1.7	-93%	1.5	-93%	0.3	-99%	0.3	-99%	0.3	-99%	0.2	-99%	0.2	-99%
	Scorch height	m	11.2	-77%	10.4	-81%	9.1	-83%	0.6	-99%	0.6	-99%	0.5	-99%	0.2	-100%	0.1	-100%
	Crowning index	km/h	31.8	133%	29.3	41%	25.2	29%	31.8	133%	29.3	41%	25.2	29%	29.3	41%	27.3	40%

Fire behavior

At the same time, since the costs of each management strategy will be budgeted, it is also possible to evaluate which management alternative is the best in terms of cost-efficiency.

Thank you!

www.fire-res.eu

@FIRERESProject @FIRERESProject R^G FIRE-RES

IN FIRE-RES

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101037419. It does not necessarily reflect the view of the European Union and in no way anticipates the Commission's future policy in this area.