

Soil biota:

Global change and the function of forest soils as a habitat for soil organisms

Martin Potthoff and Friedrich Beese

Institute of Soil Science and Forest Nutrition, University of Goettingen, Germany.

Forests soils under global and local changes from research to practice

International symposium, 15 to 18 September 2004, Bordeaux-France

Habitat conditions rule soil biota performance Global and local changes to the environment Habitat conditions Abundance, Community **Genetic shifts Biomass** structure, in populations of populations diversity Performance of functional groups **Ecosystem functions**

Ecosystem functions provided by soil biota

- Decomposition and Mineralization
 - saprofagious invertebrates
 - bacteria and fungi
- Formation of Soil Structure (Bioturbation)
 - 🄄 earthworms
- Regulation (Predation)
 - 🄄 nematodes, colembola, mites....

Ecosystem functions provided by soil biota

Functions		Organisms involved								
\triangleright	Maintenance of soil structure	Bioturbating invertebrates and plant roots, mycorrhizae and								
		some other microorganisms								
	Regulation of soil hydrological	Most bioturbating invertebrates and plant roots								
	processes									
\triangleright	Gas exchanges and carbon	Mostly microorganisms and plant roots, some C protected	in							
	sequestration	large compact biogenic invertebrate aggregates								
	Soil detoxification	Mostly microorganisms								
	Nutrient cycling	Mostly microorganisms and plant roots, some soil and litte	er							
		feeding invertebrates								
	Decomposition of organic matter	Various saprophytic and litter feeding invertebrates								
		(detritivores), fungi, bacteria, actinomycetes and other								
		microorganisms								
	Suppression of pests, parasites and	Plants, mycorrhizae and other fungi, nematodes, bacteria a	and							
	diseases	various other microorganisms, collembola, earthworms,								
		various predators								
\triangleright	Sources of food and medicines	Plant roots, various insects (crickets, beetle larvae, ants,								
		termites), earthworms, vertebrates, microorganisms and their								
		by-products								
	Symbiotic and asymbiotic	Rhizobia, mycorrhizae, actinomycetes, diazotrophic bacter	ria							
	relationships with plants and their	and various other rhizosphere microorganisms, ants								
	roots									
	Plant growth control (positive and	Direct effects: plant r oots, rhizobia, mycorrhizae,								
	negative)	actinomycetes, pathogens, phytoparasitic nematodes,								
		rhizophagous insects, plant growth promoting rhizosphere								
		microorganisms, biocontrol agents								
		Indirect effects: most soil biota								

detailed list from Swift 2001

Soil biota: Groupings, Outcuts

Taxonomic groupings

♦ Animals, Microbs …

Ecological groupings

life forms (earthworms)

Size groupings

✤ meio-, meso-, and macrofauna

Biogeografic grouping

🄄 exotic vs. native

Anthropogenic grouping

bests vs. beneficial organisms

Special groupings

♦ specific functions like AM fungi etc.

- ♦ Species, families …
- 🏷 feeding types (nematoda)
 - ✤ litterbag mesh sizes

Order	Alliance	Association						
1. Lumbricetalia Sites	1.1 Lumbricion Undisturbed aerated soils	1.11 Stercuto-Lumbricetum Forest with mull humus forms						
moderately acid to rich in lime		1.12 Fridericio-Lumbricetum Grassland and arable land on loamy soils						
	1.2 Enchytraeion Disturbed and eutrophicated	1.21 Fridericio-Enchytraeetum Arable land on sandy soils						
*	soils	1.22 Buchholzio-Enchytraeetum Eutrophicated, compacted soils under urban influence						
		1.23 Eisenietum Compost sites						
	1.3 Eiseniellion Water-saturated, badly aerated soils	1.31 Octolasietum tyrtaei Fen, alder swamp, high base saturation						
		1.32 Eisenielletum Semiaquatic sites, floodplain						
2. Cognettietalia Sites with acid humus layer or	2.1 Achaeto-Cognettion Dry and moist soils with low base saturation	2.11 Achaeto-Cognettietum Forest and heathland with moder or mor humus forms						
peat	2.2 Cognettion sphagnetorum Wet organic soils with low base saturation	2.21 Cognettietum sphagnetorum Fen, ombrotrophic bog, low base saturation						
. Henleetalia Sites moderately	3.1 Mesenchytraeo-Henleion Decomposition inhibited by low temperature	3.11 Mesenchytraeo-Henleetum Permafrost soils in arctic tundra						
acid to rich in lime with humus layer	3.2 Fridericio-Henleion Bioturbation inhibited by lack of soil dwelling earthworms	3.21 Fridericio-Henleetum Early succession stage in reclaimed polders and marshlands						

Classifications of Communities (Graefe)

Classifications of Communities (Graefe)

bests vs. beneficial organisms

Special groupings

specific functions like AM fungi etc.

Environmental changes vs key functional groups

Environmental changes vs key functional groups

Microcosm studies in the lab

Microcosm studies in the field

Field investigation of gradients covering trends of global change

Long term field investigations and monitoring

Some snapshots from current science (1)

Long term monitoring of forest sites

The roof project at Solling, Germany

Some snapshots from current science (2)

Forest management practices and soil biota Earthworms in forest floors after degradation from acid rain and later liming as an restoration practice

Some snapshots from current science (2)

Forest management practices and soil biota Earthworms in forest floors after degradation from acid rain and later liming as an restoration practice

Kleve														
Monschau														
Arnsberg														
Bad Driburg														
Buffer regions				Exchanger			 ✓ Silicate → 			Carbonate				
рН (Н ₂ О, 0-5 сm)	3.4- 3.6	3.6- 3.8	3.8- 4.0	4.0- 4.2	4.2- 4.4	4.4- 4.6	4.6- 4.8	4.8- 5.0	5.0- 5.2	5.8- 6.0	6.0-6.2	6.4- 6.6	6.8- 7.0	7.0- 7.2
Lumbricus rubellus	+	+	+	+	+	+	+	+	+	+	+			
Dendrodrilus rubidus	+	+	+	+	+	+	+	+	+					
Dendrobaena octaedra	+	+	+	+	+	+	+	+						
Lumbricus castaneus		+	+	+	+	+	+	+	+	+	+	+	+	+
Dendrobaena pygmaea					+									
Lumbricus terrestris				+	+		+		+	+	+	+	+	+
Aporrectodea longa				+										
Aporrectodea caliginosa									+	+	+	+	+	+
Aporrectodea rosea				+		+		+		+		+	+	+
Octolasion lacteum						+	+	+	+	+	+	+	+	+
Octolasion cyaneum									+	+	+	+		
Eiseniella tetraedra						+								

Potthoff et al. 2002

Some snapshots from current science (3)

Invasion of non-native species (Earthworms in Minnesota)

Some snapshots from current science (4)

Genetic shifts due to changes in habitat quality

Atmospheric enrichment of CO₂ and soil microbial biomass

Results from FACE experiments in forest and grassland plots

- (3) Mostly no effect of FACE was detected for SMB-C even under increasing primary production
- (4) SMB-C never decreased
- (5) Microbial turnover for C and N often increased
- (6) Effects strongly depend on soil characteristics
- (7) N availability is ruling the effects
- (8) Microbial N-fixation is supported under FACE in low N soils
- (9) More information on effects at the community level are needed

Some snapshots from current science (6)

Soil biological properties and plant communities

Potthoff et al. 2004

Some snapshots from current science (7)

Atmospheric enrichment of CO₂ and nematodes

Abunance of Bacterial feeding nematodes increases Yeates et al. 1999, Nematology 1:285-293

N limitations support plant feeding taxons in FACE experiments, N supply supports predator/omnivores Hoeksema et al. 2000, Pedobiologia 44:725-735

Total abundance of nematodes <u>decreases</u> in elevated CO₂ Neher et al. 2004, Functional Ecology 18,584-591

Total abundance of nematodes <u>increases</u> in elevated CO₂ Yeates et al. 2003, Biology and fertility of soils 38, 319-326

- Current science gives a difuse picture of soil biological properties due to environmental changes
- •We are far away from predictable scenarios in the soil system
- Multidiciplinary thinking and communication is needed in identifying risks to ecosystem functions

- Linking community structures to functions
- Identifying factors that put key functions at risk
- Management of soil biota of forest floors that are degrading or damaged
- Resistance and resilience of soil communities and soil functions to disturbance
- Identifying indicators to assess soil quality in terms of habitat conditions

Diversity of soil organisms (Kulhankova, David)

Mangagement of soil fertility and soil organisms (*Ranger*, *Meklaoui*, *Ferreira*)

Nutrient pools and transformations (Xu, Martinez,

Tewksbury & van Miegroet, Maquère, Andrade)

Many thanks to all contributors and listeners

