SUSTAIN: a forest ecosystem model incorporating hydraulic and nutritional constraints on tree growth

Roderick Dewar

Unité de Bioclimatologie, INRA Bordeaux

Goal : to understand and quantify the sustainable behaviour of forest plantations

Includes : plant-soil & C-N-H₂O interactions

Status : under development

Collaboration : F. Magnani (CNR, Italy)

Support : EC Program CARBO-AGE

sapwood density

Magnani (PhD thesis, 1999) :

Magnani (PhD thesis, 1999) :

plant model = ON, soil model = OFF*

	t _{closure}	LAI max	h ₂₀	T _{rot}	MAI max
	(yr)	(m ² m ⁻²)	(m)	(yr)	$(m^3 ha^{-1} yr^{-1})$
base	11	5.6	13	52	13
$2 \times N_{soil}$	6	8.6	21	42	29
2×CO ₂	10	7.9	19	65	18
2×VPD	10	4.2	10	41	12

* soil inorganic N held fixed

plant model = ON, soil model = ON^*

* soil inorganic N varies dynamically

Interim conclusions

Cavitation hypothesis + functional balance gives simple, realistic allocation sub-model

Coupling to soil sub-model highlights risk of leaching losses prior to canopy closure

What now ?

Evaluate soil sub-model I ncorporate management interventions Explore long-term steady state